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3.1. Existence of closed geodesics. Let (M, g) be a compact Riemannian manifold
and c0 : S1 → M a continuous closed curve. Show that in the family of all continuous
and piecewise C1 curves c : S1 → M which are homotopic to c0, there is a shortest
one. Prove that this is a geodesic.

Proof. Let us first prove that c0 is homotopic to a piecewise C1-curve c1. To this
aim, we split c0 into finitely many paths γi : [0, 1] → M such that γi(1) = γi+1(0),
γn(1) = γ1(0) and γi is contained in a charts {(φi, Ui)}n

i=1 with Ui simply connected.
Then γi is homotopic (relative to the endpoints) to a C1-curve γ̃i and by connecting
the γ̃i’s we get a piecewise C1-curve c1 which is homotopic to c0. Then c1 has finite
length L(c1).

Let L := infc L(c) be the infimum over all curves c : S1 → M that are piecewise C1 and
homotopic to c0 and consider a minimizing sequence, i.e. a sequence (cn : S1 → M)n∈N
with limn→∞ L(cn) = L.

We may assume that the curves cn : [0, 1] → M are parametrized proportionally to
arclength, i.e. L(cn|[a,b]) = |b − a| · L(cn). As M is compact, there is some r > 0 such
that for all p ∈ M it holds that for all q, q′ ∈ B(p, 3r) there is a unique geodesic from
q to q′ in B(p, 3r) and B(p, 3r) is simply connected.

Fix some N ∈ N such that 1
N < r

L and define tk := k
N for k = 0, . . . , N . Consider

now the sequences (cn(tk))n∈N. By compactness of M , we may assume (by possibly
passing to subsequences) that cn(tk) → pk for each k = 0, . . . , N . We have

d(pk, pk+1) ≤ lim sup
n→∞

d(cn(tk), cn(tk+1) ≤ lim sup
n→∞

1
N L(cn) < r

and therefore we can define a continuous, piece-wise C1-curve c : [0, 1] → M by
concatenating the unique geodesics between pk and pk+1. For the length of c we have

L(c) =
N−1∑
k=0

L
(

c|[ k
N

, k+1
N ]

)
=

N−1∑
k=0

d(pk, pk+1) ≤ N lim sup
n→∞

1
N L(cn) = L.

It remains to prove that c is homotopic to c0. Observe that for n large enough, we
have c(

[
k
N , k+1

N

]
), cn(

[
k
N , k+1

N

]
) ⊂ B(pk, 3r) and since B(pk, 3r) is simply connected

there is a homotopy from cn|[ k
N

, k+1
N ] to c|[ k

N
, k+1

N ] with the endpoints following the
unique geodesics from cn(tk) to pk and from cn(tk+1) to pk+1, respectively. Combining
these homotopies, we get a homotopy from cn to c.

Observe that c is locally length minimizing and hence a geodesic.
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3.2. Homogeneous Riemannian manifolds. Let (M, g) be a homogeneous Rie-
mannian manifold, i.e. the isometry group of M acts transitively on M . Prove that
M is geodesically complete.

Solution. Fix some p ∈ M and choose ϵ > 0 such that geodesics through p exist
on B(p, 2ϵ). Then for all q ∈ M , there exists an isometry φ ∈ Isom(M) such that
φ(q) = p and hence geodesics also exist on B(q, 2ϵ).

Let γ : I → M be a geodesic with I ⊂ R maximal and which is parametrized by
arclength. For t ∈ I, we have (t − ϵ, t + ϵ) ⊂ I by the above and therefore I = R.

Note: By the Theorem of Hopf-Rinow this implies that M is complete.

3.3. Metric and Riemannian isometries. Let (M, g) and (M̄, ḡ) be two connected
Riemannian manifolds with induced distance functions d and d̄, respectively. Further,
let f : (M, d) → (M̄, d̄) be an isometry of metric spaces, i.e. f is surjective and for all
p, p′ ∈ M we have d̄(f(p), f(p′)) = d(p, p′).

(a) Prove that for every geodesic γ in M , γ̄ := f ◦ γ is a geodesic in M .

(b) Let p ∈ M . Define F : TMp → TM̄f(p) with

F (X) := d

dt

∣∣∣∣
t=0

f ◦ γX(t),

where γX is the geodesic with γX(0) = p and γ̇(0) = X. Show that F is surjective
and satisfies F (cX) = cF (X) for all X ∈ TMp and c ∈ R.

(c) Conclude that F is an isometry by proving ∥F (X)∥ = ∥X∥.

(d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.

(e) Prove that f is a diffeomorphism for which f∗ḡ = g holds.

Solution. (a) As the property of being a geodesic is local, we may assume that both
γ : [0, L] → M and f ◦γ : [0, L] → M̄ are contained in an open set U ⊂ M and Ū ⊂ M̄ ,
respectively, such that points in U and Ū are connected by a unique geodesic in U
or Ū . Then there is a unique geodesic β from γ̄(0) to γ̄(L). We claim that γ̄ and β
coincide.
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In the following all geodesics are parametrized by arclength. For t ∈ [0, L] there are
geodesics β1 from γ̄(0) to γ̄(t) and β2 from γ̄(t) to γ̄(L). Concatenating β1 and β2,
we get some piece-wise C1-curve from γ̄(0) to γ̄(L) with length

L(β1β2) = L(β1) + L(β2)
= d̄(γ̄(0), γ̄(t)) + d̄(γ̄(t), γ̄(L))
= d(γ(0), γ(t)) + d(γ(t), γ(L))
= d(γ(0), γ(L)) = d̄(γ̄(0), γ̄(L)) = L(β).

Hence, by uniqueness of the geodesic from γ̄(0) to γ̄(L), β1β2 and β coincide, i.e.
γ̄(t) = β(t).

(b) Observe that f is bijective and its inverse f−1 is also is an isometry of metric
spaces.

First, we prove that F is surjective. Let Y ∈ TM̄f(p) and γ̄ the geodesic through f(p)
with ˙̄γ(0) = Y . Then Y = F (X) for X := d

dt

∣∣∣
t=0

f−1 ◦ γ̄(t).

From γcX(t) = γX(ct) it follows that

F (cX) = d

dt

∣∣∣∣
t=0

f ◦ γX(ct) = cF (X).

(c) For ϵ > 0 small enough, we have that γX(ϵ) and f ◦ γX(ϵ) are contained in a
normal neighborhood of p and f(p), respectively. Hence we get

ϵ∥X∥ = d(p, γX(ϵ)) = d̄(f(p), f ◦ γX(ϵ)) = ϵ∥F (X)∥.

By the formula
2gp(X, Y ) = ∥X∥2 + ∥Y ∥2 − ∥X − Y ∥2

we conclude that gp(X, Y ) = gf(p)(F (X), F (Y )).

(d) For all X, Y, Z ∈ TMp and c ∈ R, we have

ḡf(p)(F (X + cY ), F (Z)) = gp(X + cY, Z)
= gp(X, Z) + cgp(Y, Z)
= ḡf(p)(F (X), F (Z)) + cḡf(p)(F (Y ), F (Z))
= ḡf(p)(F (X) + cF (Y ), F (Z))
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Hence F is linear and therefore smooth.

If Vp is a neighborhood of 0 ∈ TMp such that expp |Vp : Vp → Up is a diffeomorphism,
then we have

f |Up = expf(p) ◦F ◦ (expp |Vp)−1.

Hence f is smooth as well.

(e) The argument above works for all p ∈ M and also for f−1. Hence f is a diffeomor-
phism. Furthermore, we have

dfp = d(expf(p) ◦F ◦ exp−1
p ) = F

and thus

f∗ḡp(Xp, Yp) = ḡf(p)(dfp(Xp), dfp(Yp)) = ḡf(p)(F (Xp), F (Yp)) = gp(Xp, Yp),

for all X, Y ∈ TM .
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