D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Solution 3	FS 2025

3.1. Existence of closed geodesics. Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. Show that in the family of all continuous and piecewise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one. Prove that this is a geodesic.

Proof. Let us first prove that c_0 is homotopic to a piecewise C^1 -curve c_1 . To this aim, we split c_0 into finitely many paths $\gamma_i \colon [0,1] \to M$ such that $\gamma_i(1) = \gamma_{i+1}(0)$, $\gamma_n(1) = \gamma_1(0)$ and γ_i is contained in a charts $\{(\varphi_i, U_i)\}_{i=1}^n$ with U_i simply connected. Then γ_i is homotopic (relative to the endpoints) to a C^1 -curve $\tilde{\gamma}_i$ and by connecting the $\tilde{\gamma}_i$'s we get a piecewise C^1 -curve c_1 which is homotopic to c_0 . Then c_1 has finite length $L(c_1)$.

Let $L := \inf_c L(c)$ be the infimum over all curves $c \colon S^1 \to M$ that are piecewise C^1 and homotopic to c_0 and consider a minimizing sequence, i.e. a sequence $(c_n \colon S^1 \to M)_{n \in \mathbb{N}}$ with $\lim_{n \to \infty} L(c_n) = L$.

We may assume that the curves $c_n: [0,1] \to M$ are parametrized proportionally to arclength, i.e. $L(c_n|_{[a,b]}) = |b-a| \cdot L(c_n)$. As M is compact, there is some r > 0 such that for all $p \in M$ it holds that for all $q, q' \in B(p, 3r)$ there is a unique geodesic from q to q' in B(p, 3r) and B(p, 3r) is simply connected.

Fix some $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{r}{L}$ and define $t_k := \frac{k}{N}$ for $k = 0, \ldots, N$. Consider now the sequences $(c_n(t_k))_{n \in \mathbb{N}}$. By compactness of M, we may assume (by possibly passing to subsequences) that $c_n(t_k) \to p_k$ for each $k = 0, \ldots, N$. We have

$$d(p_k, p_{k+1}) \le \limsup_{n \to \infty} d(c_n(t_k), c_n(t_{k+1}) \le \limsup_{n \to \infty} \frac{1}{N} L(c_n) < r$$

and therefore we can define a continuous, piece-wise C^1 -curve $c: [0,1] \to M$ by concatenating the unique geodesics between p_k and p_{k+1} . For the length of c we have

$$L(c) = \sum_{k=0}^{N-1} L\left(c|_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}\right) = \sum_{k=0}^{N-1} d(p_k, p_{k+1}) \le N \limsup_{n \to \infty} \frac{1}{N} L(c_n) = L.$$

It remains to prove that c is homotopic to c_0 . Observe that for n large enough, we have $c(\lfloor \frac{k}{N}, \frac{k+1}{N} \rfloor), c_n(\lfloor \frac{k}{N}, \frac{k+1}{N} \rfloor) \subset B(p_k, 3r)$ and since $B(p_k, 3r)$ is simply connected there is a homotopy from $c_n|_{\lfloor \frac{k}{N}, \frac{k+1}{N} \rfloor}$ to $c|_{\lfloor \frac{k}{N}, \frac{k+1}{N} \rfloor}$ with the endpoints following the unique geodesics from $c_n(t_k)$ to p_k and from $c_n(t_{k+1})$ to p_{k+1} , respectively. Combining these homotopies, we get a homotopy from c_n to c.

Observe that c is locally length minimizing and hence a geodesic.

ETH Zürich	Differential Geometry II	D-MATH
FS 2025	Solution 3	Prof. Dr. Urs Lang

3.2. Homogeneous Riemannian manifolds. Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts transitively on M. Prove that M is geodesically complete.

Solution. Fix some $p \in M$ and choose $\epsilon > 0$ such that geodesics through p exist on $B(p, 2\epsilon)$. Then for all $q \in M$, there exists an isometry $\varphi \in \text{Isom}(M)$ such that $\varphi(q) = p$ and hence geodesics also exist on $B(q, 2\epsilon)$.

Let $\gamma: I \to M$ be a geodesic with $I \subset \mathbb{R}$ maximal and which is parametrized by arclength. For $t \in I$, we have $(t - \epsilon, t + \epsilon) \subset I$ by the above and therefore $I = \mathbb{R}$. \Box

Note: By the Theorem of Hopf-Rinow this implies that M is complete.

3.3. Metric and Riemannian isometries. Let (M, g) and (M, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and \bar{d} , respectively. Further, let $f: (M, d) \to (\bar{M}, \bar{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p' \in M$ we have $\bar{d}(f(p), f(p')) = d(p, p')$.

- (a) Prove that for every geodesic γ in M, $\bar{\gamma} := f \circ \gamma$ is a geodesic in M.
- (b) Let $p \in M$. Define $F: TM_p \to T\overline{M}_{f(p)}$ with

$$F(X) := \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(t),$$

where γ_X is the geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}(0) = X$. Show that F is surjective and satisfies F(cX) = cF(X) for all $X \in TM_p$ and $c \in \mathbb{R}$.

- (c) Conclude that F is an isometry by proving ||F(X)|| = ||X||.
- (d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
- (e) Prove that f is a diffeomorphism for which $f^*\bar{g} = g$ holds.

Solution. (a) As the property of being a geodesic is local, we may assume that both $\gamma \colon [0, L] \to M$ and $f \circ \gamma \colon [0, L] \to \overline{M}$ are contained in an open set $U \subset M$ and $\overline{U} \subset \overline{M}$, respectively, such that points in U and \overline{U} are connected by a unique geodesic in U or \overline{U} . Then there is a unique geodesic β from $\overline{\gamma}(0)$ to $\overline{\gamma}(L)$. We claim that $\overline{\gamma}$ and β coincide.

D-MATH	Differential Geometry II	ETH Zürich
Prof. Dr. Urs Lang	Solution 3	FS 2025

In the following all geodesics are parametrized by arclength. For $t \in [0, L]$ there are geodesics β_1 from $\bar{\gamma}(0)$ to $\bar{\gamma}(t)$ and β_2 from $\bar{\gamma}(t)$ to $\bar{\gamma}(L)$. Concatenating β_1 and β_2 , we get some piece-wise C^1 -curve from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$ with length

$$\begin{split} L(\beta_1\beta_2) &= L(\beta_1) + L(\beta_2) \\ &= \bar{d}(\bar{\gamma}(0), \bar{\gamma}(t)) + \bar{d}(\bar{\gamma}(t), \bar{\gamma}(L)) \\ &= d(\gamma(0), \gamma(t)) + d(\gamma(t), \gamma(L)) \\ &= d(\gamma(0), \gamma(L)) = \bar{d}(\bar{\gamma}(0), \bar{\gamma}(L)) = L(\beta). \end{split}$$

Hence, by uniqueness of the geodesic from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$, $\beta_1\beta_2$ and β coincide, i.e. $\bar{\gamma}(t) = \beta(t)$.

(b) Observe that f is bijective and its inverse f^{-1} is also is an isometry of metric spaces.

First, we prove that F is surjective. Let $Y \in T\overline{M}_{f(p)}$ and $\bar{\gamma}$ the geodesic through f(p) with $\dot{\bar{\gamma}}(0) = Y$. Then Y = F(X) for $X := \frac{d}{dt}\Big|_{t=0} f^{-1} \circ \bar{\gamma}(t)$.

From $\gamma_{cX}(t) = \gamma_X(ct)$ it follows that

$$F(cX) = \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(ct) = cF(X).$$

(c) For $\epsilon > 0$ small enough, we have that $\gamma_X(\epsilon)$ and $f \circ \gamma_X(\epsilon)$ are contained in a normal neighborhood of p and f(p), respectively. Hence we get

$$\epsilon \|X\| = d(p, \gamma_X(\epsilon)) = \overline{d}(f(p), f \circ \gamma_X(\epsilon)) = \epsilon \|F(X)\|.$$

By the formula

$$2g_p(X,Y) = ||X||^2 + ||Y||^2 - ||X - Y||^2$$

we conclude that $g_p(X, Y) = g_{f(p)}(F(X), F(Y)).$

(d) For all $X, Y, Z \in TM_p$ and $c \in \mathbb{R}$, we have

$$\begin{split} \bar{g}_{f(p)}(F(X+cY),F(Z)) &= g_p(X+cY,Z) \\ &= g_p(X,Z) + cg_p(Y,Z) \\ &= \bar{g}_{f(p)}(F(X),F(Z)) + c\bar{g}_{f(p)}(F(Y),F(Z)) \\ &= \bar{g}_{f(p)}(F(X) + cF(Y),F(Z)) \end{split}$$

ETH Zürich	Differential Geometry II	D-MATH
FS 2025	Solution 3	Prof. Dr. Urs Lang

Hence F is linear and therefore smooth.

If V_p is a neighborhood of $0 \in TM_p$ such that $\exp_p |_{V_p} \colon V_p \to U_p$ is a diffeomorphism, then we have

$$f|_{U_p} = \exp_{f(p)} \circ F \circ (\exp_p |_{V_p})^{-1}.$$

Hence f is smooth as well.

(e) The argument above works for all $p \in M$ and also for f^{-1} . Hence f is a diffeomorphism. Furthermore, we have

$$df_p = d(\exp_{f(p)} \circ F \circ \exp_p^{-1}) = F$$

and thus

$$f^*\bar{g}_p(X_p, Y_p) = \bar{g}_{f(p)}(df_p(X_p), df_p(Y_p)) = \bar{g}_{f(p)}(F(X_p), F(Y_p)) = g_p(X_p, Y_p),$$
for all $X, Y \in TM.$